Coordinate Proofs

1. Find the lengths of the diagonals of this trapezoid.

- 2. In the coordinate plane, draw a square with sides 4q units long. Give coordinates for each vertex, and the coordinates of the point of intersection of the diagonals.
- 3. Prove using coordinate geometry: The midpoints of the sides of a rhombus determine a rectangle.
- 4. Prove using coordinate geometry: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
- 5. Write a coordinate proof of the following theorem: If a parallelogram is a rectangle, then its diagonals are congruent.
- 6. If you want to prove that the diagonals of a parallelogram bisect each other using coordinate geometry, how would you place the parallelogram on the coordinate plane? Give the coordinates of the vertices for the placement you choose.

Coordinate Proofs Answer Section

1. Each diagonal has length $\sqrt{(a+b)^2+c^2}$.

- 2.
- 3.
 - [4] Proofs may vary. Sample:

For rhombus in the coordinate plane, as shown, the quadrilateral determined by the midpoints (a, b), (-a, b), (a, -b), and (-a, -b) has one pair of opposite sides vertical (no slope) and the other pair horizontal (slope 0), so the quadrilateral is a parallelogram with perpendicular sides, or a rectangle.

- [3] shows good setup and idea for proof, but has some small inaccuracies
- [2] shows reasonable setup and idea for proof, but has significant math difficulties
- [1] shows reasonable setup for proof

4.

[4] Proofs may vary. Sample:

Given: Line l is the perpendicular bisector of \overline{CD} .

Prove: Point R(a, b) is equidistant from points C and D.

By the Distance Formula,

$$CR = \sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$$

$$DR = \sqrt{(a-2a)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$$

Because CR = DR, point R on the perpendicular bisector of the segment is equidistant from the endpoints of the segment.

- [3] shows good setup and idea for proof, but has some small inaccuracies
- [2] shows reasonable setup and idea for proof, but has significant math difficulties
- [1] shows reasonable setup for proof

5.

[4] Proofs may vary. Sample:

Answers may vary. Sample:

Given: \overline{WY} and \overline{XZ} are diagonals of rectangle WXYZ.

Prove: $\overline{WY} \cong \overline{XZ}$

Distance of
$$\overline{XZ} = \sqrt{(a-0)^2 + (0-b)^2} = \sqrt{a^2 + b^2}$$

 $\overline{WY} = \sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$

By the definition of congruency, diagonals \overline{XZ} and \overline{WY} of rectangle WXYZ are congruent.

- [3] shows good setup and idea for proof, but has some small inaccuracies
- [2] shows reasonable setup and idea for proof, but has significant math difficulties
- [1] shows reasonable setup for proof

6. Answers may vary. Sample:

