Name: _____ Date: _____

ID: A

Two-Column Proofs

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Complete the proof by giving the reason for the indicated step.

If
$$\frac{2}{3}x = 8 - 2x$$
, then $x = 3$.

Given:
$$\frac{2}{3}x = 8 - 2x$$
 Prove: $x = 3$

____ 1.

1. a.
$$\frac{2}{3}x = 8 - 2x$$

$$\Rightarrow$$
 b. $2x = 3(8 - 2x)$

c.
$$2x = 24 - 6x$$

d.
$$8x = 24$$

e.
$$x = 3$$

- a. Multiplication property of equality
- b. Division property of equality
- c. Addition property of equality
- d. Reflexive property of equality

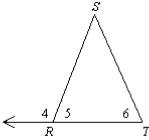
2.

a.
$$\frac{2}{3}x = 8 - 2x$$

b.
$$2x = 3(8 - 2x)$$

c.
$$2x = 24 - 6x$$

$$\Rightarrow$$
 d. $8x = 24$


e.
$$x = 3$$

- a. Subtraction property of equality
- b. Addition property of equality
- c. Substitution property of equality
- d. Symmetric property of equality

Name: _____

ID: A

Copy and complete the proof. Give the reason for the indicated step.

If $m \angle 4 + m \angle 6 = 180^{\circ}$, then $m \angle 5 = m \angle 6$.

Given: $m \angle 4 + m \angle 6 = 180^{\circ}$

Prove: $m \angle 5 = m \angle 6$

- 3. \Rightarrow a. $m \angle 4 + m \angle 6 = 180^{\circ}$
 - b. $m \angle 4 + m \angle 5 = 180^{\circ}$
 - c. $m \angle 4 + m \angle 5 = m \angle 4 + m \angle 6$
 - d. $m \angle 4 = m \angle 4$
 - e. <u>?</u> = <u>?</u>
 - a. Symmetric property of equality
 - b. Addition property of equality
 - c. Given
 - d. Definition of linear angles

4. a.
$$m \angle 4 + m \angle 6 = 180^{\circ}$$

b.
$$m \angle 4 + m \angle 5 = 180^{\circ}$$

$$\Rightarrow$$
 c. $m \angle 4 + m \angle 5 = m \angle 4 + m \angle 6$

d.
$$m \angle 4 = m \angle 4$$

e.
$$? = ?$$

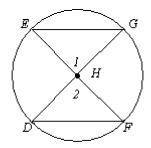
- a. Reflexive property of equality
- b. Given
- c. Addition property of equality
- d. Substitution property of equality

5. a.
$$m \angle 4 + m \angle 6 = 180^{\circ}$$

b.
$$m \angle 4 + m \angle 5 = 180^{\circ}$$

c.
$$m \angle 4 + m \angle 5 = m \angle 4 + m \angle 6$$

d.
$$m \angle 4 = m \angle 4$$


a.
$$m \angle 4 = m \angle 5$$
; Given

- b. $m \angle 4 = m \angle 5 = m \angle 6$; Reflexive property of equality
- c. $m \angle 4 = m \angle 6$; Given
- d. $m \angle 5 = m \angle 6$; Subtraction Property of equality

Write a two-column proof. Give a reason for the indicated step.

Given: Circle H; arc $EG \cong arc DF$

Prove: $\overline{EG} \cong \overline{DF}$

6. Proof:

a. arc $EG \cong \operatorname{arc} DF$

$$\Rightarrow$$
 b. $\overline{HE} \cong \overline{HD}$ and $\overline{HG} \cong \overline{HF}$

c.
$$\angle 1 \cong \angle 2$$

d.
$$\Delta EHG \cong \Delta DHF$$

e.
$$\overline{EG} \cong \overline{DF}$$

a. Congruent arcs have congruent chords.

b. Chords are congruent.

c. All diameters of a circle are congruent.

d. All radii of a circle are congruent.

7. Proof:

a. $\operatorname{arc} EG \cong \operatorname{arc} DF$

b.
$$HE \cong HD$$
 and $HG \cong HF$

c.
$$\angle 1 \cong \angle 2$$

 \Rightarrow d. $\triangle EHG \cong \triangle DHF$

e.
$$\overline{EG} \cong \overline{DF}$$

a. SSS

b. SAS

c. AA

d. ASA

Two-Column Proofs Answer Section

MULTIPLE CHOICE

- 1. A
- 2. B
- 3. C
- 4. D
- 5. D
- 6. D
- 7. B

