Two-Column Proofs

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Complete the proof by giving the reason for the indicated step.

If
$$\frac{2}{3}x = 8 - 2x$$
, then $x = 3$.

Given:
$$\frac{2}{3}x = 8 - 2x$$
 Prove: $x = 3$

$$1. \implies \text{a. } \frac{2}{3}x = 8 - 2x$$

b.
$$2x = 3(8 - 2x)$$

c.
$$2x = 24 - 6x$$

d.
$$8x = 24$$

e.
$$x = 3$$

- Reflexive property of equality
- b. Multiplication property of equality
- c. Given
- d. Substitution property of equality

a.
$$\frac{2}{3}x = 8 - 2x$$

b.
$$2x = 3(8 - 2x)$$

$$\Rightarrow$$
 c. $2x = 24 - 6x$

d.
$$8x = 24$$

e.
$$x = 3$$

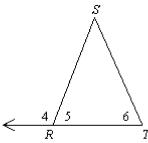
- Distributive property
- b. Multiplication property of equality
- c. Associative property of equality
- d. Commutative property of equality

a.
$$\frac{2}{3}x = 8 - 2x$$

b.
$$2x = 3(8 - 2x)$$

c.
$$2x = 24 - 6x$$

d.
$$8x = 24$$


$$\Rightarrow$$
 e. $x = 3$

- Division property of equality
- b. Symmetric property of equality
- Addition property of equality
- Multiplication property of equality

Name: _____

ID: A

Copy and complete the proof. Give the reason for the indicated step.

If $m \angle 4 + m \angle 6 = 180^{\circ}$, then $m \angle 5 = m \angle 6$.

Given: $m \angle 4 + m \angle 6 = 180^{\circ}$

Prove: $m \angle 5 = m \angle 6$

4. a. $m \angle 4 + m \angle 6 = 180^{\circ}$

 \Rightarrow b. $m \angle 4 + m \angle 5 = 180^{\circ}$

 $0. \ m \angle 4 + m \angle 3 = 100$

c. $m \angle 4 + m \angle 5 = m \angle 4 + m \angle 6$

d. $m \angle 4 = m \angle 4$

e. <u>?</u> = <u>?</u>

a. Substitution property of equality

b. Linear pairs of angles are supplementary.

c. Given

d. Angle addition

5. a. $m \angle 4 + m \angle 6 = 180^{\circ}$

b. $m \angle 4 + m \angle 5 = 180^{\circ}$

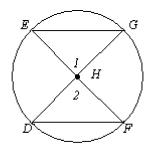
c. $m \angle 4 + m \angle 5 = m \angle 4 + m \angle 6$

 \Rightarrow d. $m \angle 4 = m \angle 4$

e. <u>?</u> = <u>?</u>

a. Symmetric property of equality

b. Addition property of equality


c. Subtraction property of equality

d. Reflexive property of equality

Write a two-column proof. Give a reason for the indicated step.

Given: Circle H; arc $EG \cong arc DF$

Prove: $\overline{EG} \cong \overline{DF}$

6. Proof:

 \Rightarrow a. arc $EG \cong$ arc DF

- b. $HE \cong HD$ and $HG \cong HF$
- c. $\angle 1 \cong \angle 2$
- d. $\Delta EHG \cong \Delta DHF$
- e. $EG \cong DF$
- a. Minor arcs are congruent.
- b. Given
- c. All radii in a circle are congruent.
- d. Central angles are congruent.

7. Proof:

- a. arc $EG \cong \operatorname{arc} DF$
- b. $HE \cong HD$ and $HG \cong HF$
- \Rightarrow c. $\angle 1 \cong \angle 2$
 - d. $\Delta EHG \cong \Delta DHF$
 - e. $\overline{EG} \cong \overline{DF}$
- a. Minor arcs are congruent.
- b. Congruent arcs have congruent chords.
- c. Linear pairs of angles are congruent.
- d. Corresponding central angles to congruent arcs are congruent.

8. Proof:

- a. $\operatorname{arc} EG \cong \operatorname{arc} DF$
- b. $HE \cong HD$ and $HG \cong HF$
- c. $\angle 1 \cong \angle 2$
- d. $\Delta EHG \cong \Delta DHF$
- \Rightarrow e. $EG \cong DF$
- a. Corresponding parts of congruent triangles are congruent (CPCTC).
- b. All radii for a circle are congruent.
- c. Chords equally distant from the diameter are congruent.
- d. Chords are congruent in a circle.

Two-Column Proofs Answer Section

MULTIPLE CHOICE

- 1. C
- 2. A
- 3. A
- 4. B
- 5. D
- 6. B
- 7. D
- 8. A

